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Abstract—In this paper, we present results obtained by using a numerical procedure for the free convection
flow along a rotating nonisothermal plate subject to a nonuniform gravity field. Several specific forms for the
temperature distributions of the plate are considered. For these instances the skin-friction and heat transfer
rate on the wall at selected values of the distance from the leading edge and for some values of Prandtl numbers
are presented. The method employed is shown to be very accurate in comparison with previous solutions.

NOMENCLATURE

ag,dy,a;,..., constants;

C;, local skin-friction coefficient ;

F, reduced stream function;

F“(£,0), wall skin-friction parameter ;

g(x), nonuniform gravity field in the direction
opposite of the x-axis, +w*(xy+X);

9o, uniform gravity field, + w?x,;

G, dimensionless temperature function;

G'(£,0), wall heat transfer parameter ;

Gr,, local Grashof number, go (T, — T.,)x3/v?;

h,, local heat transfer coefficient ;

k, thermal conductivity;

Nu, local Nusselt number, A, x/k;

P(&), wall temperature function ;

Pr, Prandtl number, v/a;

Qs local surface heat transfer rate per unit
area;

Re, Reynolds number, u,x,/v;

S,(&),  dimensionless wall temperature ;

T, temperature;

u, velocity component in x direction ;

v, velocity component in y direction;

X, axial coordinate;

Xo» distance of leading edge of the plate from
the center of rotation;

Vs coordinate measured normal to the plate.

Greek symbols

o, thermal diffusivity ;

B, bulk coefficient of thermal expansion;

n, transformed coordinate in y direction;

0, dimensionless temperature;

U, dynamic viscosity ;

v, kinematic viscosity ;

g, transformed coordinate in x direction ;

0, density of fluid;

Typs wall skin-friction ;

P, stream function;

w, angular velocity of rotating plate.
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Subscripts

r, reference condition ;

w, wall condition;;
0, ambient condition.
Superscripts

!

differentiation with respect to 7;
dimensionless condition.

?

3

1. INTRODUCTION

RECENT developments in engineering have led to
increased interest in natural free convection flows from
isothermal surfaces subject to nonuniform gravity
fields. Asitis well-known, centrifugal gravity fields play
an important role in the understanding of particular
flow problems that involve convection on rotating
and/or curved plates at the earth’s surface. For example
centrifugal gravity fields arise in many rotating
machinery applications.

Although similarity solutions have been obtained for
the free convection flow on isothermal surfaces under
constant gravity, they do not exist for a nonuniform
gravity and/or walls with an arbitrary temperature
distribution. Attempts to obtain practical solutions,
exact or approximate, to the complete set of boundary
layer free convection equations from isothermal
surfaces under variation of the gravity field have been
made by some research workers. Thus, the problem of
the effect of nonuniform gravity caused by rotation of
an isothermal flat plate has been considered in several
papers [1-6]. The theoretical analyses of this problem
were carried out using momentum integral and series
expansion methods, and numerical local nonsimilarity
or finite-difference procedures. The numerical evidence
of Lienhard et al. [5] strengthened the conviction that
the integral method is only an approximate approach
anditisrather difficult to determine the range for which
the solution is valid. Also the series expansion method
is somewhat laborious to apply and it requires many
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terms for large distance, x, from the leading edge of the
plate. The local nonsimilarity method, on the other
hand, does not predict sufficiently accurate results for
large x. This conclusion is borne out by the detailed
study of Nath [6]. Later, these approaches were refined
by Venkatachala and Nath [7] by using a finite-
difference formulation.

The purpose of this paper is to present a description
of the steady nonisothermal laminar free convection
flows along(i}an infinite cold plate rotatingat wrads '
in aradial plane withits leading edge being at a distance
X, from the axis of rotation, and (ii) a finite hot plate of
length x,, rotating at »rad s ! in a radial plane about
the line x = 0, for the case in which gravity varies with
the distance x. In the following we shall restrict
ourselves to considering gravity fields varying linearly
with this distance. The extension to other realistic cases,
whilst straightforward in principle, would offer
interesting problems as well. For each problem
considered here the temperature distributions of the
plates arc assumed to be polynomials of first and
second degree, respectively. In the analysis, an efficient
and very accurate f{inite-difference method due to
Keller [8] is employed to solve the system of
transformed boundary-layer equations. This method
has proved to be a very convenient technique for the
numerical study of a variety of nonsimilar flow
problems. Numerical solutions for the problems under
consideration were obtained and the results for the
skin-friction and heat transfer rate are presented for
Prandtl numbers 0.7. 1.0, 10 and 100.

2. MATHEMATICAL FORMULATION

Consider an infinite cold plate rotating at w rad s !

in a radial plane with its leading edge beginning at a
distance x, from the axis of rotation, or a finite hot plate
oflength x,, rotatingatmrads™ ' inaradial plane about
the line x = Osubject to a nonuniform gravity field g(x).
The main effort in the present study is centered on the
cases where the plates temperature distributions T,(x)
have specific forms.

Let the coordinates be chosen such that x measures
the distance from the leading edge of the plate and y
measures the distance normal to the plate. The flow is
assumed to be steady and incompressible. The
boundary layer approximations are adopted along
with the requirement that (T, — T,,.) « 1 (large Taylor
number). Thus, the equations governing the conserv-
ation of mass, momentum and energy can be written as

S+ o =0, (1
X Oy
o N Jo
u o cTu
— + 0— = gX)SX)0+ —, 2
uﬂ,\f + L(?f‘ GRS W) ay? )

o6 ()d In Sw(x) N a0 1 a0
hadt o i
u 0X dx 8_\7 Pr 6y

with the boundary conditions

Equations (1}H4) appear in dimensionless form, based
on the following relations:

X = y=--Re" 4=
X0 X¢ u,
v r—T
¢ =—~Re'" 0 e g:ﬁ{, (5)
U, Tux)—T, Yo
T (x)—T,
u, = T - T x142, S, -
r [qoﬁ( r cx) 0] ( 7; — T,

Re = Eq.

v
In the foregoing equations, the standard symbols are
defined in the nomenclature.

To facilitate a numerical solution, equations (1){4)
are transformed from the (X, y) coordinates to (&, #) new
coordinates and dependent variables defined as

(6)
F&n = (64453743 (%) 17+ Gy =10
where F(&, ) is a reduced stream function and G(&,n) a
dimensionless temperature function. Making use of the
relations (6), the basic equations (1}+{4) can be
transformed into the following system of equations:

F"+[3+PEIFF"=2[1+ PONFY +g(0G

e GF
- 45(; S -F: ) )
SN [day
i
Pr G"+[3+ P(E)JFG'—4P(E)F'G
—4”(/F’(WG ,@F\) 8
= 4¢ \ ar ﬂf/ (8)
with the boundary conditions
n=0: F(0)=F(0)=0 GE0=1
=0 F(owo)=0, G&wx)=0 9

where the primes denote differentiation with respect to
n and the function P(¢) of the variable surface
temperature is defined by

ety

P() = % (o)

S8

r\x“i

Now these equations are of a form which is convenient
for numerical integration.

The physical quantities of primary interest are the
local skin-friction coefficient C, and the local Nusselt
number Nu which can be written, respectively, in the



Free convection flow on a flat plate under nonuniform gravity 533

form
Com T Ny (11)
f = <v>2: u= k
pl—
x
From the definitions of wall skin-friction

Ty, = w(0u/dy),—o and local heat transfer coefficient
~ = Gw/(T,— T,.),whereq,, = —k(6T/dy),- o, itcanbe
readily shown that
3/4
") F'(£,0),

G
cf=4< s
4

1/4
Nu— —<G:*> GE,0).

(12)

3. NUMERICAL SOLUTION

To solve equations (7) and (8), along with the
boundary conditions given by equation (9), we use
Keller’s box method [8], a method that has been shown
to be particularly accurate for parabolic problems.
According to this method, we first convert the partial
differential equations(7)and (8)into a system of five first-
order partial differential equations by introducing new
unknown functions of y-derivatives. This system is then
put into finite-difference form in which the nonlinear
difference equations are linearized by the method of
quasilinearization. The resulting linear difference
equations, along with the corresponding boundary
conditions, are finally solved by an efficient block-
tridiagonal factorization method. The details of the
computational procedure can be found elsewhere
[9-11].

A wide range of numerical results have been derived
using this method but we present here just a small
selection. Four sets of results obtained are for Pr = 0.7,
1.0, 10 and 100, respectively. In order to compare our
numerical integrations with other available results, we
shall suppose the gravity g(¢) represented in the form

gy =1+¢ 0<i<!

where the positive sign is taken for the cold rotating
plate and negative sign for the hot rotating plate,
respectively.

In the next section calculations are first performed
for the case of isothermal plates, ie. S, = const.,
followed by the case of nonisothermal plates where
S«(£) is variable. In the later situation we will consider
the class of wall temperature distributions defined, for
instance, as

(13)

5.8 = ap+al+ad+ (14)
and therefore we find that
¢ ds ai+at+--
- adas 5
PO=5.0 @€ " ratraer

Thus, the function P(¢) can be evaluated once the
constants a; are specified.

4. RESULTS AND DISCUSSION

4.1, Isothermal plate

In this particular case equation (10) takes the form
P(&) = 0, and the equations (7) and (8) are markedly
simplified, with a considerable reduction in the
computational effort required. As an indication of the
accuracy of the present method, we shall write below
the series solutions by Lienhard et al. [ 5] for parameters
C; and Nu in the form

Cf _ 4<Gr ) I:Z ( 1),,1 n( )6 :l, (16)
Nu = (i’)/[ 2 (10 ] an

where ! = 0if the positive sign is chosenin equation (13)
whereas | = 1 for the case in which minus sign is chosen
inequation (13). A summary of surface derivatives F,(0)
and ,(0) so obtained for different values of Prs and nsis
given in Lienhard’s paper (Table 3). The comparison of
predicted skin-friction and Nusselt number calculated
at this stage is shown in Table 1 for a cold rotating plate
when Pr = 0.7, and in Table 2 for a hot rotating plate
when Pr = 10, respectively. As can be seen from these
tables, for small locations ¢ the agreement between
series and present numerical solution is very good. As ¢
is increased, the series solution becomes less accurate.
This is more sensitive for large Prandtl numbers
because the level of accuracy of the results using a finite
number of terms in the series depends largely on the
convergence of the series, i.e. on the Prandtl number
and the range of ¢.

To provide further perspectives about the numerical
results obtained in this way and the data from other
sources, as mentioned, Figs. 1 and 2 have been
prepared. They refer to the relative changes in the local
skin-friction F"(£,0)/F”(0,0) and local heat transfer
G'(£,0)/G'(0,0) for representative values of ¢ and three
sets of Pr (0.7, 1.0 and 10). We have to note from the
results shown in Figs. 1 and 2 that although the method
of series solution is not expected to be valid for large £,

Table 1. Summary of numerical results for an isothermal cold
rotating plate when Pr = 0.7

Co/a(Gr./4)*'* Nu/(Gr, /4"

Series Present Series Present
0 0.6789 0.6789 0.4995 0.4995
0.0375 0.6958 0.6958 0.5043 0.5043
0.1034 0.7254 0.7250 0.5125 0.5124
0.1488 0.7449 0.7449 0.5178 0.5178
0.2426 0.7855 0.7855 0.5286 0.5286
0.3539 0.8328 0.8326 0.5408 0.5406
0.4825 0.8864 0.8860 0.5542 0.5537
0.5713 0.9230 0.9221 0.5633 0.5623
0.6003 0.9349 0.9338 0.5662 0.5651
0.6565 0.9578 0.9564 0.5718 0.5703
0.7710 1.0044 1.0017 0.5834 0.5805
0.9451 1.0750 1.0694 0.6034 0.5952
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Table 2. Summary of numerical results for an isothermal hot
rotating plate when Pr = 10

C/4Gr /4 Nu/(Gr o'

¢ Series Present Series Present
0 0.4192 0.4192 1.1693 1.1695
0.0516 0.4041 0.4040 1.1521 1.1523
0.0746 0.3973 0.3972 1.1442 1.1444
0.1363 0.3788 0.3788 1.1223 1.1225
0.2476 0.3446 0.3445 1.0799 1.0799
0.2729 0.3366 0.3365 1.0697 1.0695
0.3036 0.3269 0.3268 1.0571 1.0566
0.4006 0.2955 0.2952 1.0147 1.0133
0.4574 0.2766 0.2760 0.9882 0.9854
0.5020 0.2616 0.2606 0.9664 0.9621
0.5537 0.2437 0.2423 0.9401 0.9332
0.6167 0.2216 0.2193 0.9063 0.8948
0.7395 0.1768 0.1713 0.8349 0.8060
0.7756 0.1632 0.1560 0.8124 0.7745
0.7764 0.1629 0.7737

0.1557 0.8119

the finite-difference results compare favourably with
those of local nonsimilarity method (three equation
model) even for a fairly large range of £. Accordingly,
the present method produces accurate results for a
particular plate temperature distribution and it can be
used with full confidence for other forms of the plate
temperature distributions. Moreover, its simplicity
lends strong support to the use of the method. Again,
both Figs. 1 and 2 show quite clearly, as to be expected,
that g(&) has a significant effect on C; and Nu.
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4.2. Nonisothermal plate

Let us now consider the class of wall temperature
distributions defined by equation (14). We shall assign
values to the constants ¢; and denote the problems thus
defined as the cases

18, =1-1¢
IS, =1+ L& (%)
S, =144k

It should be stressed, however, that from a practical
point of view, there are also important problems with
exponential, sinusoidal or step change in the wall
temperature variations. The application of such
physically realistic situations to the problem of free
convection flow along a non-rotating vertical flat plate
has recently been published [97.

Figures 3 and 4 cover the results for the skin-friction
and heat transfer in the cases I-II1 evaluated at various
£ locations when Pr = 0.7. For the sake of comparison,
the profiles in the particular case of isothermal plates
(S, = const) are also plotted at the same distances &
(full lines). Some marked differences are immediately
apparent. The skin-friction is greater in the case I than
in the cases Il and III of variation of the wall
temperature. Then, for the cold rotating plate the skin-
friction increases with the increase of &, but for the hot
plate the effect of & is just the opposite. The results
represented in Fig. 4 indicate that the heat transfer is

Hot rotating plate
9/g, =1 -3

Cold rotating plate 1
g/9q=1+% 1
1
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FiG. 1. Comparison of F“(&,0)/F”(0,0) for the free convection along rotating isothermal plates.
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Free convection flow on a flat plate under nonuniform gravity

Hot rotating plate
g/go =1- g

Cold rotating plate
g /g0 =1+ % 41.4

o Pr =10 % .
B 081 41.4
L 1.2
I~ 1.0
1.4
1.2
1.0
Finite — difference : 4 0.8
~—— Present
° venkatachaia and 7 0.6
Nath -‘[7]. Jdog
. Local nonsimilarity(s)
A Series [5) 0.2
— 1 1 1 0
10 08 06 0.4 0.2 0 0.2 04 06 08 10
M

L

Hot rotating plate
g /90 =1 -S

Cold rotating plate
g /90 =1 "'E -‘ 1.2

FIG. 3. Skin-friction results for nonisothermal rotating plates, Pr = 0.7.
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F1G. 4. Heat transfer results for nonisothermal rotating plates, Pr = 0.7.

greater in the case I1 than in the cases I and III. Apart
from this, for the cold plate an increase in £ resultsin an
increase in the heat transfer in the cases of an isothermal
and a linearly increasing or linearly decreasing plate
temperature. However, both C; and Nu are seen to
decrease in the case IIT as the distance ¢ increases.
Furthermore, a noteworthy behaviour in the heat
transfer profile for the case of a hot rotating plate is that
it shows a maximum (at £ = 0.0375) when the plate
temperature increases (case II).

Figures 5 and 6 show the calculated values of C; and

Nuinthe case I at successive distances £ and for various
Prandtl numbers (Pr=0.7, 1.0, 10 and 100,
respectively). An examination of these figures reveals
that at a given station &, there is a tendency for the effect
of Prto decrease C; and to increase Nu as Princreases ;
this tendency seems to accelerate with the increasing
Prandtl number. However, one can observe that both
C;and Nu tend to become less sensitive to the variation
of relatively small Prandtl numbers. As shownin Fig. 5,
on the other hand the gravity field causes the increase of
the skin-friction in the case of a cold plate, while an

Hot rotating plate

Cold rotating plate

1.2} 9/g,:1-3 l] /g, =1+% 1.2
i Pr=0.7 '
|
1.0k l T»O
0.8t 4038 0.8
406
~ 0.4
r— 0.2 40.2
0 1 1 1 L A Lt 0
1.0 08 06 04 02 0 02 04 06 08 10

N

F1G. 5. Skin-friction results for nonisothermal rotating plates, case I, Pr = 0.7, 1.0, 10 and 100.
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Hot rotating plate
9749, =1-3

Cold rotating plate
g/g0 =1+3%

2.1914

1.0 08 06 04 02

F1G. 6. Heat transfer results for nonisothermal rotating plates, case I, Pr = 0.7, 1.0, 10 and 100.

opposite trend is observed for the hot plate. But the
gravity field will hardly act on the decrease of the heat
transfer with increasing distance &.

Also included in these figures are the similarity
solutions for F*(0) and — G’(0) obtained by putting &
=0and §=1 in equations (7) and (8). We may mention
that the data for Pr = 0.7, 1.0 and 10 are in excellent
agreement with those from Table 3 of ref. [5], a
confirmation of the reliability of the present method.

Finally, it is worth noting that the numerical scheme
used allows computations to be carried out close to the
centre of rotation of the heated plate, i.e. near & = 1,
where the boundary layers are very thin.

5. CONCLUSIONS

A numerical study has been made for the free
convection flow over isothermal and a nonisothermal
rotating flat plates subject to a linear variation of the
gravity field ; both the cases of the cold and hot plates
are considered. The problems formulated here are more
general than those appearing in previous publications
and include the unpublished results of variable wall
temperature distributions.

The results have been shown to be very accurate
when compared with known solutions for an
isothermal plate. It is found that the local skin-friction
and local Nusselt number results exhibit a strong

dependence on the Prandtl number and gravity field.
The tabulated results of the skin-friction and heat
transfer parameters provide a family of numerical data
against which the results from various approximate
methods can be compared.
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CONVECTION LIBRE SUR UNE PLAQUE PLANE NON-ISOTHERME SOUS
GRAVITATION NON-UNIFORME

Résumé— On présente des résultats obtenus par une procédure numérique pour la convection libre autour
d’une plaque tournante non-isotherme et soumise a un champ gravitationnel non-uniforme. Plusieurs formes
spécifiques pour la distribution de température sur la plaque sont considérees. On présente le frottement
pariétal et ie flux de chaleur pour des valeurs choisies de la distance au bord d’attaque et pour quelques valeurs
du nombre de Prandtl. La méthode employée se révele trés précise en comparaison des solutions antérieures.

FREIE KONVEKTIONSSTROMUNG AN EINER NICHTISOTHERMEN EBENEN PLATTE
UNTER BEDINGUNGEN UNGLEICHFORMIGER SCHWERKRAFT

Zusammenfassung —In dieser Arbeit werden die Ergebnisse eines numerischen Rechenverfahrens fur die freie
Konvektionsstromung an einer rotierenden nichtisothermen Platte mitgeteilt, die einem ungleichférmigen
Schwerkraftfeld ausgesetzt ist. Es werden einige spezielle Formen der Temperaturverteilung der Platte
behandelt. Fiir diese Félle wird die Oberflachenreibung und die an die Wand {ibertragene Wirmemenge fiir
verschiedene Prandtl-Zahlen in einigen Punkten mit einer bestimmten Entfernung von der Anstromkante
berechnet. Die verwendete Methode erweist sich als sehr genau im Vergleich zu fritheren Losungen.

CBOBOJJHOKOHBEKTHUBHOE TEYEHME HA HEM30TEPMUUYECKOH [JIOCKOH
MJACTUHE B HEOJQHOPOJHOM T10JIE CHUJIbl TAXECTU

AIIHOTEIIIISIRHDCHCTHBHCHB! Pe3ybTaThl YHACJICHHBIX pacye€TOB CBOOOAHOKOHBEKTMBHOIO 00TEKaHHA
BpaILla}OLL[eﬁCﬂ HCH30T€pMH‘ICCKOﬁ IJIaCTHHBI B HCONHOPOIOHOM TMOJiI€ CHJIBI THXECTH. Paccmorpeﬂo
HECKOJILKO YAaCTHbIX CJ/Iy4yaeB PACNPEAC/ICHUA TEMNEpaTypbl MJACTUHBI, H [UIg HHUX INPCACTABJICHBI
3HAYCHHUA MOBCPXHOCTHOIO TPCHUA U CKOPOCTH TEMIOOTARYH HAa CTCHKE IS Pa3sIH4HbIX paCCTOﬂHHﬁ oT
nepem{eﬁ KPOMKH 4 MpH HECKONLKHUX 3HAYEHUAX 4YHUCTIA npaHlITJ'ISI. IMoka3zana BbICOKAs TOYHOCTH
MIPEIJIOKEHHOTO METOAa O CPABHEHUIO C PAHCE UCTIONL30BABINIUMHUCA PCIIEHHAMY.



