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Abstract-In this paper, we present results obtained by using a numerical procedure for the free convection 
flow along a rotating nonisothermal plate subject to a nonuniform gravity field. Several specific forms for the 
temperature distributions of the plate are considered. For these instances the skin-friction and heat transfer 
rate on the wall at selected values ofthe distance from the leading edge and for some values of Prandtl numbers 
are presented. The method employed is shown to be very accurate in comparison with previous solutions. 

NOMENCLATURE Subscripts 

a,,a,, a2,. . . , constants; 
r, 
W, 
a, 

local skin-friction coefficient ; 
reduced stream function; 
wall skin-friction parameter; 
nonuniform gravity field in the direction 
opposite of the x-axis, rfr w’(x,, f x) ; 
uniform gravity field, + ozxo ; 
dimensionless temperature function; 
wall heat transfer parameter ; 
local Grashof number, g&T, - T,)x”/? ; 
local heat transfer coefficient ; 
thermal conductivity; 
local Nusselt number, h,x/k; 

wall temperature function ; 
Prandtl number, v/c( ; 
local surface heat transfer rate per unit 
area ; 
Reynolds number, u,x,/v; 
dimensionless wall temperature; 
temperature ; 
velocity component in x direction ; 
velocity component in y direction ; 
axial coordinate; 

distance of leading edge of the plate from 
the center of rotation; 
coordinate measured normal to the plate. 

Greek symbols 

a, thermal diffusivity ; 

B> bulk coefficient of thermal expansion; 

‘I> transformed coordinate in y direction ; 
8, dimeniionless temperature ; 
P> dynamic viscosity; 

V, kinematic viscosity; 

4, transformed coordinate in x direction; 

P? density of fluid ; 
TW, wall skin-friction; 

Y’, stream function ; 
w, angular velocity of rotating plate. 

reference condition ; 
wall condition ; 
ambient condition. 

Superscripts 
I differentiation with respect to q; 

dimensionless condition. 

1. INTRODUCTION 

RECENT developments in engineering have led to 
increased interest in natural free convection flows from 
isothermal surfaces subject to nonuniform gravity 
fields. As it is well-known, centrifugal gravity fields play 
an important role in the understanding of particular 
flow problems that involve convection on rotating 

and/or curved plates at the earth’s surface. For example 
centrifugal gravity fields arise in many rotating 
machinery applications. 

Although similarity solutions have been obtained for 

the free convection flow on isothermal surfaces under 
constant gravity, they do not exist for a nonuniform 
gravity and/or walls with an arbitrary temperature 
distribution. Attempts to obtain practical solutions, 

exact or approximate, to the complete set of boundary 
layer free convection equations from isothermal 
surfaces under variation of the gravity field have been 
made by some research workers. Thus, the problem of 
the effect of nonuniform gravity caused by rotation of 
an isothermal flat plate has been considered in several 
papers [l-6]. The theoretical analyses of this problem 
were carried out using momentum integral and series 

expansion methods, and numerical local nonsimilarity 
or finite-difference procedures. The numerical evidence 
of Lienhard et al. [S] strengthened the conviction that 
the integral method is only an approximate approach 
and it is rather difficult to determine the range for which 
the solution is valid. Also the series expansion method 
is somewhat laborious to apply and it requires many 
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terms for large distance, x, from the leading edge of the 
plate. The local nonsimilarity method, on the other 
hand, does not predict sufficiently accurate results for 
large s. This conclusion is borne out by the detailed 
study of Nath 161. Later, these approaches were refined 

by Venkatachala and Nath 171 by using a finite- 
difference formulation. 

The purpose of this paper is to present a description 

of the steady nonisothermal laminar free convection 
llowsalong(i)an infnitecoldplaterotatingatorads ’ 
in a radial plane with its leading edge being at adistance 
3.” from the axis of rotation, and (ii) a finite hot plate of 
length .xg, rotating at w rad s ’ in a radial plane about 
the line .x = 0, for the case in which gravity varies with 
the distance X. In the following we shall restrict 

ourselves to considering gravity fields varying linearly 
with thisdistance. Theextension to other realisticcases, 
whilst straightforward in principle. would offer 

interesting problems as well. For each problem 
considered here the temperature distributions of the 
plates arc assumed to be polynomials of first and 
second degree, respectively. In the analysis, an efficient 
and very accurate linite-difference method due to 
Keller [S] is employed to solve the system of 
transformed boundary-layer equations. This method 
has proved to be a very convenient technique for the 

numerical study of a variety of nonsimilar flow 
problems. Numerical solutions for the problems under 
consideration were obtained and the results for the 
skin-friction and heat transfer rate are presented for 
Prandtl numbers 0.7. I .(I, IO and 100. 

2. MATHEMATICAL FORMULATION 

Consider an infinite cold plate rotating at (U rad s ’ 
in a radial plane with its leading edge beginning at a 
distance x0 from the axis of rotation, or a finite hot plate 

oflengthx,,,rotatingatturads~ ’ inaradialplaneabout 
the line x = 0 subject to a nonuniform gravity field g(x). 
The main effort in the present study is centered on the 
cases where the plates temperature distributions T,(X) 

have specific forms. 
Let the coordinates be chosen such that x measures 

the distance from the leading edge of the plate and J 
measures the distance normal to the plate. The flow is 
assumed to be steady and incompressible. The 

boundary layer approximations are adopted along 

with the requirement that /I( T, - T, ) cc 1 (large Taylor 
number). Thus. the equations governing the conserv- 
ation ofmass, momentum and energy can be written as 

with the boundary conditions 

J;= 0: u = fl = ()* (1 m-z I . 
!‘ = 7_, : u = 0. 0 -- 0. 

(41 

Equations (l)-(4) appear in dimensionless form, based 
on the following relations : 

.I; = 5 ~(o, jj = ” &I’“. ” . I( :: 
-xn ‘1, 

T,(X) - T, 

In the foregoing equations, the standard symbols are 
defined in the nomenclature. 

To facilitate a numerical solution, equations (I H4) 
are transformed from the (x, y) coordinates to (& q) new 
coordinates and dependent variables defined as 

where F(<, q) is a reduced stream function and G(<, 8) a 
dimensionless temperature function. Making use of the 
relations (6), the basic equations (lt(4) can be 
transformed into the following system of equations : 

F”’ + [3 + P(<)]FF”-2[ 1 + P(5)] (F-y $-Lj(i’)G 

; G” + [3 + P(<)]FG’-4P(<)F’G 

with the boundary conditions 

r/=0: F(~,O)=F’(~,O)=O, G(&O)= 1. 

r/ = SC : F’(<, cc) = 0, G(<, ,x) = 0 (9 

where the primes denote differentiation with respect to 
4 and the function P(t) of the variable surface 
temperature is defined by 

Now these equations are of a form which is convenient 
for numerical integration. 

The physical quantities of primary interest are the 
local skin-friction coefficient Cr and the local Nusselt 
number Nu which can be written, respectively, in the 
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form 

From the definitions of wall skin-friction 
z, = ~(&/ay)~=e and local heat transfer coefficient 

h, = q,/(T,,- T,), whereq, = - k(aT/ay),,e,it can be 
readily shown that 
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F”(t,O), 

(12) 

l/4 

c’(h 01. 

3. NUMERICAL SOLUTION 

To solve equations (7) and (8) along with the 

boundary conditions given by equation (9), we use 
Keller’s box method [S], a method that has been shown 
to be particularly accurate for parabolic problems. 
According to this method, we first convert the partial 
differentialequations(7)and(8)intoasystemoffivefirst- 
order partial differential equations by introducing new 
unknown functions of?-derivatives. This system is then 
put into finite-difference form in which the nonlinear 
difference equations are linearized by the method of 
quasilinearization. The resulting linear difference 
equations, along with the corresponding boundary 
conditions, are finally solved by an efficient block- 
tridiagonal factorization method. The details of the 
computational procedure can be found elsewhere 
[9-111. 

A wide range of numerical results have been derived 
using this method but we present here just a small 
selection. Four sets of results obtained are for Pr = 0.7, 
1.0, 10 and 100, respectively. In order to compare our 
numerical integrations with other available results, we 

shall suppose the gravity &(5) represented in the form 

(13) 

where the positive sign is taken for the cold rotating 
plate and negative sign for the hot rotating plate, 
respectively. 

In the next section calculations are first performed 
for the case of isothermal plates, i.e. S, = const., 
followed by the case of nonisothermal plates where 
S,(t) is variable. In the later situation we will consider 
the class of wall temperature distributions defined, for 
instance, as 

uo = a,+a,<+a2(2+... (14) 

and therefore we find that 

5 dS 
P(5) = __ - = 

a,5+Q?+... 
S,(t) dt a,+u,<+u2(2+...’ (15) 

Thus, the function P(r) can be evaluated once the 
constants ui are specified. 
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4. RESULTS AND DISCUSSION 

4.1. Isothermal plate 
In this particular case equation (10) takes the form 

P(r) = 0, and the equations (7) and (8) are markedly 
simplified, with a considerable reduction in the 
computational effort required. As an indication of the 
accuracy of the present method, we shall write below 
the series solutions by Lienhard et al. [S] for parameters 
C, and Nu in the form 

(16) 

(17) 

where 1 = 0 if the positive sign is chosen in equation (13) 
whereas I = 1 for the case in which minus sign is chosen 
in equation (13). A summary of surface derivatives F:(O) 
and t?:(O) so obtained for different values ofPr s and ns is 

given in Lienhard’s paper (Table 3). The comparison of 
predicted skin-friction and Nusselt number calculated 
at this stage is shown in Table 1 for a cold rotating plate 

when Pr = 0.7, and in Table 2 for a hot rotating plate 
when Pr = 10, respectively. As can be seen from these 
tables, for small locations 5 the agreement between 
series and present numerical solution is very good. As 5 
is increased, the series solution becomes less accurate. 
This is more sensitive for large Prandtl numbers 
because the level of accuracy of the results using a finite 
number of terms in the series depends largely on the 
convergence of the series, i.e. on the Prandtl number 
and the range of 5. 

To provide further perspectives about the numerical 
results obtained in this way and the data from other 
sources, as mentioned, Figs. 1 and 2 have been 
prepared. They refer to the relative changes in the local 
skin-friction F”(<, O)/F”(O, 0) and local heat transfer 
G’(<, O)/G’(O, 0) for representative values of 5 and three 
sets of Pr (0.7, 1.0 and 10). We have to note from the 
results shown in Figs. 1 and 2 that although the method 
of series solution is not expected to be valid for large 5, 

Table 1. Summary ofnumerical results for an isothermal cold 
rotating plate when Pr = 0.7 

G/Wrx/4)3’4 Nu/(Gr,/4)1'4 
t Series Present Series Present 

0 
0.0375 
0.1034 
0.1488 
0.2426 
0.3539 
0.4825 
0.5713 
0.6003 
0.6565 
0.7710 
0.9451 

0.6789 0.6789 0.4995 0.4995 
0.6958 0.6958 0.5043 0.5043 
0.7254 0.7250 0.5125 0.5124 
0.7449 0.7449 0.5178 0.5178 
0.7855 0.7855 0.5286 0.5286 
0.8328 0.8326 0.5408 0.5406 
0.8864 0.8860 0.5542 0.5537 
0.9230 0.922 1 0.5633 0.5623 
0.9349 0.9338 0.5662 0.5651 
0.9578 0.9564 0.5718 0.5703 
1.0044 1.0017 0.5834 0.5805 
1.0750 1.0694 0.6034 0.5952 
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Table 2. Summary of numerical results for an isothermal hot 
rotating plate when Pr = IO 

c,.4(Grz,,4)“‘4 Nuj(Gr ‘4)l/? *i 
g Series Present Series Present 

0 0.4 192 0.4192 I.1693 1.1695 
0.05 16 0.404 1 0.4040 1.1521 1.1523 
0.0746 0.3973 0.3972 1.1442 1.1444 
0.1363 0.3788 0.3788 I.1223 1.1225 
0.2476 0.3446 0.3445 1.0799 I .0799 
0.2729 0.3366 0.3365 1.0697 I .0695 
0.3036 0.3269 0.3268 1.0571 I .0566 
0.4006 0.2955 0.2952 1.0147 I.0133 
0.4574 0.2766 0.2760 0.9882 0.9854 
0.5020 0.26 16 0.2606 0.9664 0.9621 
0.5537 0.2437 0.2423 0.940 I 0.9332 
0.6 167 0.2216 0.2 193 0.9063 0.X948 
0.7395 0.1768 0.1713 0.8349 0.8060 
0.7756 0.1632 0.1560 0.8124 0.7745 
0.7764 0.1629 0.1557 0.8119 0.7737 

the finite-difference results compare favourably with 
those of local nonsimilarity method (three equation 

model) even for a fairly large range of 5. Accordingly, 
the present method produces accurate results for a 
particular plate temperature distribution and it can be 
used with full confidence for other forms of the plate 
temperature distributions. Moreover, its simplicity 
lends strong support to the use of the method. Again, 
both Figs. 1 and 2 show quite clearly, as to be expected, 

that S(t) has a significant effect on C,- and Nu. 

Hot rotatina Diate 

16 16 

14 IL 

:2 L 1.2 

4.2. Nonisothermul plate 

Let us now consider the class of wall temperature 
distributions defined by equation (14). We shall assign 

values to the constants a, and denote the problems thus 
defined as the cases 

I S, = I - ;I$ 

IlS.=1+‘5 w :i. f IX) 

III s m, = 1 - :i+;i’l. 

It should be stressed, however, that from a practical 
point of view, there are also important problems with 
exponential, sinusoidal or .step change in the wall 
temperature variations. The application of such 

physically realistic situations to the problem of free 
convection flow along a non-rotating vertical flat plate 
has recently been published [9], 

Figures 3 and 4 cover the results for the skin-friction 
and heat transfer in the cases I-III evaluated at various 
[ locations when Pr = 0.7. For the sake of comparison, 
the profiles in the particular case of isothermal plates 
(S, = const.) are also plotted at the same distances < 

(full lines). Some marked differences are immediately 
apparent. The skin-friction is greater in the case 1 than 
in the cases II and III of variation of the wall 
temperature. Then, for the cold rotating plate the skin- 
friction increases with the increase of <, but for the hot 
plate the effect of 4 is just the opposite. The results 
represented in Fig. 4 indicate that the heat transfer is 

1 
Cold rotattng plate 

I 

g/go =l+J 
416 

02 - - 1.0 

O- Finlte - difference: _ 0.8 

5 Venkotochala ond - 0.6 

04 - Noih I71 - 04 
LOCOI nonslmllorlty [61 

0.2 - - 02 

0 I I I I I I c 
1.0 0.8 0.6 0.4 0.2 0 0.2 0.L 0.6 0.8 10 

3 

FIG. I Comparison of F”(t, O)/F”(O, 0) for the free convection along rotating isothermal plates. 
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G. 2. Comparison of G’(& O)/G’(O, 0) for the free convection along rotating isothermal plates. 
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FIG. 3. Skin-friction results for nonisothermal rotating plates, pr = 0.7. 
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FIG. 4. Heat transfer results for nonisothermal rotating plates, Pr = 0.7 

greater in the case II than in the cases 1 and III. Apart 
from this, for the cold plate an increase in 5 results in an 
increase in the heat transfer in the cases of an isothermal 
and a linearly increasing or linearly decreasing plate 

temperature. However, both C, and Nu are seen to 
decrease in the case III as the distance 5 increases. 
Furthermore, a noteworthy behaviour in the heat 
transfer profile for the case of a hot rotating plate is that 
it shows a maximum (at 5 = 0.0375) when the plate 
temperature increases (case II). 

Figures 5 and 6 show the calculated values of C, and 

Nu in the case I at successive distances < and for various 
Prandtl numbers (Pr = 0.7, 1.0, 10 and 100, 
respectively). An examination of these figures reveals 
that at a given station 5, there is a tendency for the effect 
of Pr to decrease C, and to increase NM as Pr increases ; 
this tendency seems to accelerate with the increasing 
Prandtl number. However, one can observe that both 
C, and Nu tend to become less sensitive to the variation 
of relatively small Prandtl numbers. As shown in Fig. 5, 
on the other hand the gravity field causes the increase of 
the skin-friction in the case of a cold plate, while an 
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0.8 

0.6 

Hoi rotating plate 

g /go 11-s 

c 
0.6789 

t I 0 

1.0 0.8 0.6 0.4 0.2 0 0.2 0.4 0.6 0.8 1.0 

5 

Cold rotating plate ! 

FIG. 5. Skin-friction results for nonisothermal rotating plates, case I, Pr = 0.7, 1.0, 10 and 100 



Free convection flow on a flat plate under nonuniform gravity 537 
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FIG. 6. Heat transfer results for nonisothermal rotating plates, case I, Pr = 0.7, 1.0, 10 and 100. 

opposite trend is observed for the hot plate. But the 
gravity field will hardly act on the decrease of the heat 
transfer with increasing distance <. 

Also included in these figures are the similarity 
solutions for F”(0) and -G’(O) obtained by putting 5 
= 0 and g = 1 in equations (7) and (8). We may mention 
that the data for Pr = 0.7, 1.0 and 10 are in excellent 
agreement with those from Table 3 of ref. [S], a 
confirmation of the reliability of the present method. 

Finally, it is worth noting that the numerical scheme 
used allows computations to be carried out close to the 
centre of rotation of the heated plate, i.e. near 5 = 1, 
where the boundary layers are very thin. 

5. CONCLUSIONS 

A numerical study has been made for the free 
convection flow over isothermal and a nonisothermal 
rotating flat plates subject to a linear variation of the 
gravity field; both the cases of the cold and hot plates 
are considered. The problems formulated here are more 
general than those appearing in previous publications 
and include the unpublished results of variable wall 
temperature distributions. 

The results have been shown to be very accurate 
when compared with known solutions for an 
isothermal plate. It is found that the local skin-friction 
and local Nusselt number results exhibit a strong 

dependence on the Prandtl number and gravity field. 
The tabulated results of the skin-friction and heat 
transfer parameters provide a family of numerical data 
against which the results from various approximate 
methods can be compared. 
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CONVECTION LIBRE SUR UNE PLAQUE PLANE NON-ISOTHERME SOUS 
GRAVITATION NON-UNIFORME 

R&sum&-&On prtsente des rtsultats obtenus par une proctdure numkrique pour la convection libre autour 
d’une plaque tournante non-isotherme et soumise ?t un champ gravitationnel non-uniforme. Plusieurs formes 
sptcifiques pour la distribution de tempkrature sur la plaque sont considCrees. On prt-sente le frottement 
pariktal et le flux de chaleur pour des valeurs choisies de la distance au bord d’attaque et pour quelques valeurs 
du nombre de Prandtl. La mt-thode employ&e se rCv&le trts precise en comparaison des solutions antkrieures. 

FREIE KONVEKTIONSSTRiiMUNG AN EINER NICHTISOTHERMEN EBENEN PLATTE 
UNTER BEDINGUNGEN UNGLEICHFORMIGER SCHWERKRAFT 

Zusammenfassung In dieser Arbeit werden die Ergebnisse eines numerischen Rechenverfahrens fiir die I’reie 
Konvektionsstriimung an einer rotierenden nichtisothermen Platte mitgeteilt, die einem ungleichfiirmigen 
Schwerkraftfeld ausgesetzt ist. Es werden einige spezielle Formen der Temperaturverteilung der Platte 
behandelt. Fiir diese FBlle wird die Oberflachenreibung und die an die Wand iibertragene Warmemenge fiir 
verschiedene Prandtl-Zahlen in einigen Punkten mit einer bestimmten Entfernung von der Anstramkante 

berechnet. Die verwendete Methode erweist sich als sehr genau im Vergleich zu friiheren Losungen. 

CB060AHOKOHBEKTMBHOE TEqEHME HA HEM30TEPMMYECKOfi WIOCKOti 
I-IJIACTMHE B HEOAHOPOAHOM nOJlE CMJIbI TFIXECTM 

AHHOT~UII~ -npeACTaB.VeHbl pe3yJLbTaTbI 9MCJleHHbIX PaC'ETOB CBO6OAHOKOHBeKTABHOL'O 06TeKaHHR 

Bpa"&UOU%Cfl HeH3OTepMHWCKOfi IU,aCTBHbI B HeOAHOpOAHOM fIOJ,e CAJTb1 TITCCTH. PaCCMOT~HO 

HeCKO,IbKO WCTHbIX CJly%,eB ~C"~AWleHH~ TeMnepaTypbI WIaCTIIHbl, H AJIR HUX npeACTaB.WHbl 

3HaSeHliR ~OBepXHOCTHO~OT~HH~)1CKOPOCTM TenJIOOTAa'lH Ha CTeHKe AJHI pa3."H'IHbtX PaCCTOXHHii OT 

nCpeAH'c?i+ KPOMKH M "PH HCCKOJIbKAX 3HaYeHUIIX 'SHCJla npaHATJIR. nOKa3aHa BbICOKaR TOYHOCTb 

"peA,,OXEHHOrO MeTOAa "OCpaBHeHHK) CpZ,Hee IiC"Onb30BaBU11(MACI peL"eH~KMrl. 


